McPAD: A multiple classifier system for accurate payload-based anomaly detection
نویسندگان
چکیده
Anomaly-based network Intrusion Detection Systems (IDS) are valuable tools for the defense-in-depth of computer networks. Unsupervised or unlabeled learning approaches for network anomaly detection have been recently proposed. Such anomaly-based network IDS are able to detect (unknown) zero-day attacks, although much care has to be dedicated to controlling the amount of false positives generated by the detection system. As a matter of fact, it is has been shown [2] that the false positive rate is the true limiting factor for the performance of IDS, and that in order to substantially increase the Bayesian detection rate, P (Intrusion|Alarm), the IDS must have a very low false positive rate (e.g., as low as 10−5 or even lower). In this paper we present McPAD (Multiple-Classifier Payload-based Anomaly Detector), a new accurate payload-based anomaly detection system that consists of an ensemble of one-class classifiers. We show that our anomaly detector is very accurate in detecting network attacks that bear some form of shell-code in the malicious payload. This holds true even in the case of polymorphic attacks and for very low false positive rates. Furthermore, we experiment with advanced polymorphic blending attacks and we show that in some cases even in the presence of such sophisticated attacks and for a low false positive rate our IDS still has a relatively high detection rate.
منابع مشابه
HMMPayl: an application of HMM to the analysis of the HTTP Payload
Zero-days attacks are one of the most dangerous threats against computer networks. These, by definition, are attacks never seen before. Thus, defense tools based on a database of rules (usually referred as “signatures”) that describe known attacks cannot do anything against them. Recently, defense tools based on machine learning algorithms have gained an increasing popularity as they offer the ...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملAnomalous Packet Detection using Partitioned Payload
We present Anomalous Packet Detection using Partitioned Payload system, we call as AnPDPP. AnPDPP is an improvement to PAYL system which is considered one of the complete systems for payload based anomaly detection. PAYL takes into consideration the entire payload for profile calculation and effectively for anomaly detection. Payload length is very high on port numbers like 21 and 80. Hence it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Networks
دوره 53 شماره
صفحات -
تاریخ انتشار 2009